

hands on particle physics

Des particules et des interactions

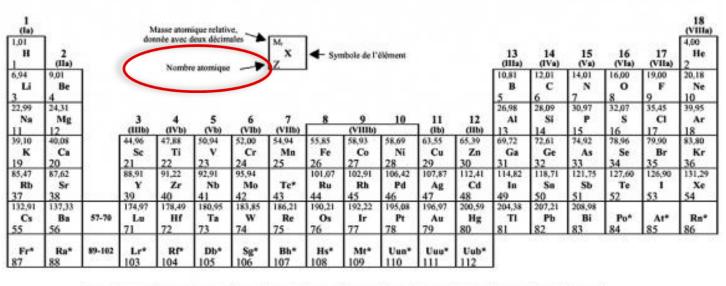
Bref état des lieux de la physique des particules

Transparents préparés pour l'essentiel par Loïc VALERY (doctorant dans l'équipe ATLAS du LPC) à l'occasion d'une autre journée Masterclasse

Contenu

- **▶** Des particules ...
- des interactions ...
- ... et un modèle!

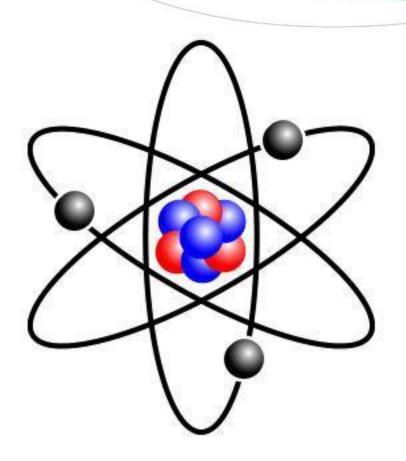
Des particules ...


Plongeons-nous au cœur de la matière!

Un peu de chimie ...

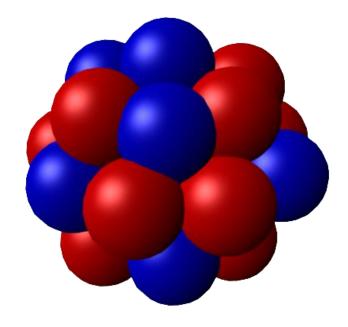
- ♦ Division d'une goutte d'eau
- Le plus petit morceau d'eau = $\underline{\text{molécule}}$ d'eau (H_2O)
- ♦ Plus petit ? **Atomes** d'hydrogène et d'oxygène.
- La matière « ordinaire » peut être décomposée en atomes.
- Atomes classés selon leurs propriétés (classification périodique des éléments)

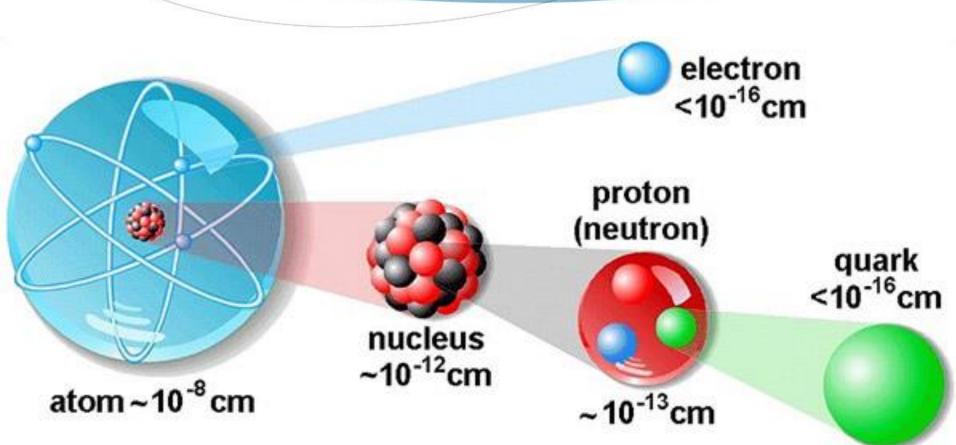
Un peu de chimie ...


Tableau périodique des éléments

138,92	140,12	140,91	144,24	Pm*	150,36	151,97	157,25	158,93	162,50	164,93	167,26	168,93	173,04
La	Ce	Pr	Nd		Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
57	58	59	60		62	63	64	65	66	67	68	69	70
Ac* 89	232,04 Th 90	231,04 Pa 91						Bk* 97					

^{* :} Eléments n'ayant pas de nucléide (isotope) de durée de vie suffisamment longue et n'ayant donc pas une composition terrestre caractéristique.


Un peu de chimie ...

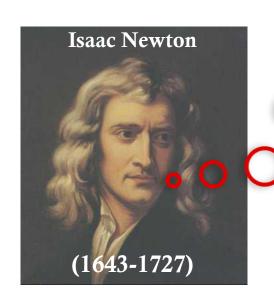

- ✓ Atome constitué de deux parties : électrons et noyaux
 - → La *chimie étudie les interactions* entre les atomes
- ✓ La physique s'attache à l'étude du noyau de l'atome. Par exemple, la radioactivité.

... et de physique

- Le noyau n'est pas insécable
- ♦ Constitué de protons et de neutrons
- Des observations nous ont amené à penser que les protons et neutrons étaient eux-mêmes constitués d'autres particules plus élémentaires.
- On parle de **quarks**.

Résumé

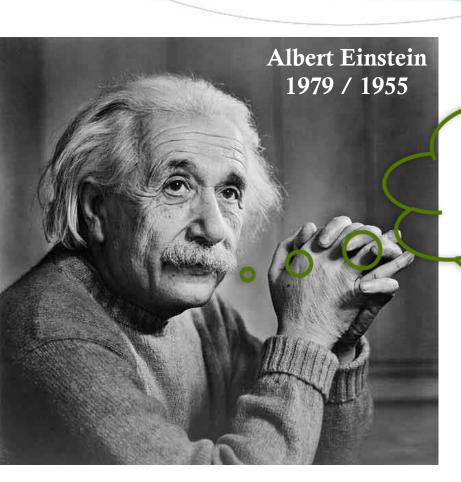
Résumé


La physique des particules a pour but

- De recenser les particules élémentaires, et de réaliser un classement, de la même façon que la CPE
- D'étudier comment ces particules interagissent entre elles

... des Interactions ...

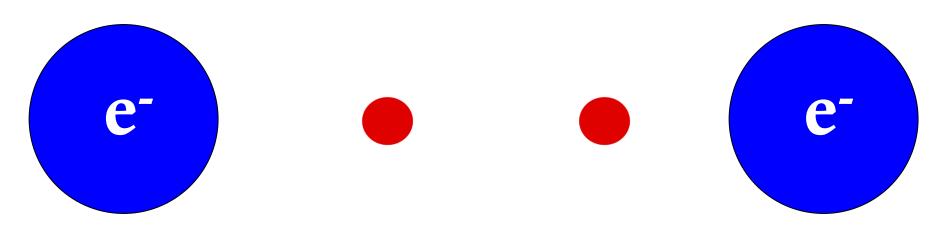
Vers la compréhension de l'infiniment petit


Evolution des pensées sur les interactions

Toutes les actions sont instantanées

Vision classiqu

Evolution des pensées sur les interactions



Une interaction est un échange de particules.

Vision moderne

Qu'est-ce qu'une interaction?

• Exemple : interaction entre deux électrons

- ✓ Interaction entre les électrons pas instantanée
- ✓ Une particule est échangée : elle **porte l'interaction**

Interrogation surprise!

• Quelles sont les interactions fondamentales ?

Interaction électromagnétique

Interaction forte

Interaction gravitationnelle

Interaction faible

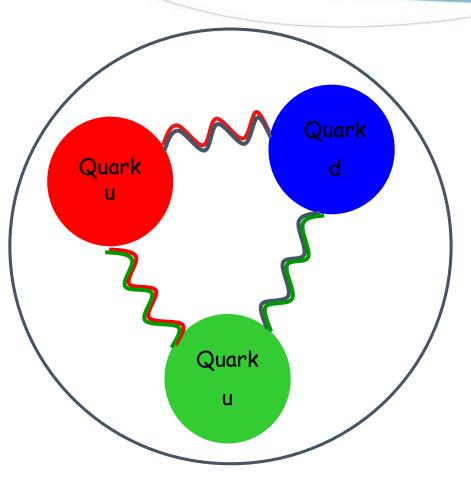
Interaction électromagnétique

- Existe entre des particules qui portent des charges électriques.
- Exemple : interaction entre électrons
- Particule qui porte cette interaction :

PHOTON

Interaction forte

• Existe entre les quarks.



- Exemple : cohésion du noyau
- Particules qui portent cette interaction :

GLUONS

Interaction forte

Exemple:

Le proton est constitué de trois quarks (u,u,d)

Ces quarks sont maintenus ensemble grâce à des **gluons**.

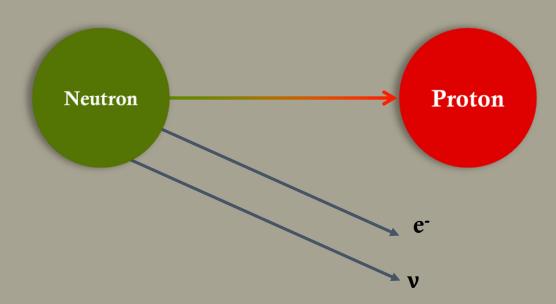
Ces derniers agissent comme de la « colle ».

Interaction faible

- Existe entre toutes les particules.
- ightharpoonup Exemple : désintégration radioactive β.
- Particules qui portent cette interaction :

$$W^+, W^-, Z$$

Radioactivité B


Radioactivité: Phénomène physique naturel au cours duquel des **noyaux atomiques instables**, se **transforment spontanément** en dégageant de l'énergie sous forme de **rayonnements** divers.

Exemple : Radioactivité **β**

$$^{60}Co \rightarrow ^{60}Ni^{+} + e^{-} + 7$$
27 protons
28 protons
32 neutrons

$$Co \rightarrow Ni^{+} + e^{-} + V$$

27 protons
28 protons
33 neutrons
32 neutrons

Questions:

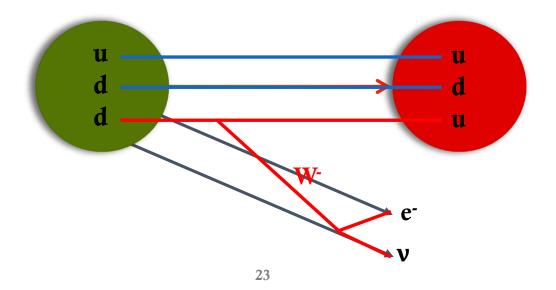
- D'où vient l'électron ? Du noyau ?
- A quoi correspond le \mathbf{v} ?

Radioactivité \(\beta \)

- ♦ Rien ne se perd, rien ne se crée, tout se transforme.
- Et alors?

Radioactivité B

$$Co \rightarrow Ni^+ + e^- + D$$


• Expérimentalement, on observe que :

$$E_{Co} > E_{Ni} + E_{e^{-}}$$

- Pour conserver l'énergie, on suppose l'existence d'une particule : un **neutrino**, particule impossible à détecter expérimentalement.
- On a donc: $E_{Co} = E_{Ni} + E_{e^-} + E_{Di}$
 - Voilà donc ce qu'est le neutrino!

Radioactivité \(\beta \)

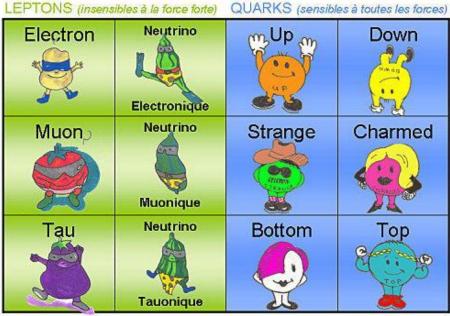
- ♦ Et l'électron?
- On peut expliquer son apparition à l'aide du boson W.

Résumé

Si le monde qui nous entoure est un mur, il est constitué de deux choses :

- ✓ Des **briques** (quarks, électrons, neutrinos)
 - **→** fermions
- ✓ Du **ciment** qui maintient ces dernières liées.
 - **→** bosons

Résumé


FERMIONS

1ère Génération (matière ordinaire)

2ème Génération

3ème Génération

BOSONS DE GAUGES

Un bref historique

Un bref historique (1/4)

- ♦ 1898 : Découverte de l'électron (J.J. Thomson) : la première particule
- 1905 : Explication de l'effet photoélectrique (A. Einstein)
 - ♦ Photon = Quantum de lumière
- 1919 : Découverte du noyau de l'atome (E. Rutherford)
- 1910 : Découverte du proton (E. Rutherford)
- - Les électrons et les photons peuvent interagir, les photons sont des particules
- ♦ 1929: Equation de Dirac (prédiction de l'existence du positron)
- 1930 : Prédiction de l'existence du neutrino (W. Pauli, désintégrations β)
- 1931 : Découverte du positron (C.D. Anderson)

Un bref historique (2/4)

- ♦ 1932-1940 : Découvertes du neutron; découverte du muon, du pion et des hypérons (ces trois dernières dans le rayonnement cosmique).
- ◆ 1946-1950 : Formulation de la théorie quantique de l'électromagnétisme (QED)
- ♦ 1951 : Observation du comportement de particules « étranges » (on comprendra plus tard qu'elles contiennent un quark s)
- - ♦ Théorie de l'interaction forte (QCD)
- 1956 : Découverte de la violation de la parité (Wu)
- ▲ 1962 : Découverte de neutrino muonique
 - Plusieurs « familles » de particules aux propriétés comparables

Un bref historique (3/4)

- ♦ 1960-1970: Découverte de centaines de particules
 - Réinterprétées plus tard comme des assemblages de quarks
- 1964 : Découverte de la violation de CP (symétrie matière-antimatière)
- ◆ 1967: Unification des forces électromagnétiques et faible
 (Glashow, Salam, Weinberg) → Les débuts du Modèle Standard
- ♦ 1973 : Prédiction du quark charme.
- 1974 : Découverte de la résonance J/ψ (quark c)
- 1976 : Découverte de la résonance Υ (quark b)
 - Troisième famille de quarks
- 1976 : Découverte du lepton τ
 - ♦ Troisième famille de leptons

Un bref historique (4/4)

- ◆ 1983 : Découverte des bosons W et du Z au CERN
- - ♦ Trois familles de neutrinos légers, prédiction de la masse du quark top...
- ♦ 1989 : Premières discussions sur la construction du LHC
- - Les neutrinos ont une masse.
- ◆ 2000 : Découverte du neutrino tauique par l'expérience DONUT (Fermilab)
- ♦ 2007 : Premières prises de données avec le LHC

... et un modèle!

Pour les unifier tous ... ou presque!

$$\begin{split} \mathcal{L}_{SM} &= \\ &-\frac{1}{2}\partial_{\nu}g_{\mu}^{a}\partial_{\nu}g_{\mu}^{a} - g_{s}f^{abc}\partial_{\mu}g_{\nu}^{a}g_{\mu}^{b}g_{\nu}^{c} - \frac{1}{4}g_{s}^{2}f^{abc}f^{ade}g_{\mu}^{b}g_{\nu}^{c}g_{\mu}^{d}g_{\nu}^{e} + \frac{1}{2}ig_{s}^{2}(\bar{q}_{i}^{\sigma}\gamma^{\mu}q_{j}^{\sigma})g_{\mu}^{a} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g_{\mu}^{c} \\ &-\partial_{\nu}W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c_{w}^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\varphi^{+}\partial_{\mu}\varphi^{-} \\ &-M^{2}\varphi^{+}\varphi^{-} - \frac{1}{2}\partial_{\mu}\varphi^{0}\partial_{\mu}\varphi^{0} - \frac{1}{2c_{w}^{2}}M\varphi^{0}\varphi^{0} - \beta_{h}\left[\frac{2M^{2}}{g^{2}} + \frac{2M}{g}H + \frac{1}{2}(H^{2} + \varphi^{0}\varphi^{0} + 2\varphi^{+}\varphi^{-})\right] + \frac{2M^{4}}{g^{2}}\alpha_{h} \\ &-igc_{w}\left[\partial_{\nu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})\right] \\ &-igs_{w}\left[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})\right] \\ &-igs_{w}\left[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})\right] \\ &-igs_{w}\left[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})\right] \\ &-igs_{w}\left[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})\right] \\ &-igs_{w}\left[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\nu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})\right] \\ &+g^{2}s_{w}c_{w}\left[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}\right] - g_{\alpha}\left[H^{3} + H^{0}\partial_{\nu}\Phi^{0} + 2H^{0}\Phi^{0}\right] \\ &+g^{2}s_{w}c_{w}\left[A_{\mu}Z_{\nu}^{0}(W_{\mu}$$

$$\begin{split} &-igs_{w}\left[\delta_{\nu}Z_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\nu}^{+}W_{\mu}^{-})-A_{\nu}(W_{\mu}^{+}\delta_{\nu}W_{\mu}^{-}-W_{\mu}^{-}\delta_{\nu}W_{\mu}^{+})+A_{\mu}(W_{\nu}^{+}\delta_{\nu}W_{\mu}^{-}-W_{\nu}^{-}\delta_{\nu}W_{\mu}^{+})\right]\\ &-igs_{w}\left[\delta_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\nu}^{+}W_{\mu}^{-})-A_{\nu}(W_{\mu}^{+}\delta_{\nu}W_{\mu}^{-}-W_{\mu}^{-}\delta_{\nu}W_{\mu}^{+})+A_{\mu}(W_{\nu}^{+}\delta_{\nu}W_{\mu}^{-}-W_{\nu}^{-}\delta_{\nu}W_{\mu}^{+})\right]\\ &-\frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-}+\frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}+g^{2}c_{w}^{2}\left(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-}-Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}\right)+g^{2}s_{w}^{2}\left(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-}-A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}\right)\\ &+g^{2}s_{w}c_{w}\left[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-}-W_{\nu}^{+}W_{\mu}^{-})-2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}\right]-g\alpha\left[H^{3}+H\varphi^{0}\varphi^{0}+2H\varphi^{+}\varphi^{-}\right] \end{split}$$

$$\begin{split} & + g^2 s_W c_W \left[A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - W_\nu^+ W_\mu^-) - 2 A_\mu Z_\mu^0 W_\nu^+ W_\nu^- \right] - g \alpha \left[H^3 + H \varphi^0 \varphi^0 + 2 H \varphi^+ \varphi^- \right] \\ & - \frac{1}{8} g^2 \alpha_h \left[H^4 + (\varphi^0)^4 + 4 (\varphi^+ \varphi^-)^2 + 4 (\varphi^0)^2 \varphi^+ \varphi^- + 4 H^2 \varphi^+ \varphi^- + 2 (\varphi^0)^2 H^2 \right] - g M W_\mu^+ W_\mu^- H - \frac{1}{2} g \frac{M}{c_W^2} Z_\mu^0 Z_\mu^0 H \\ & - \frac{1}{2} i g \left[W_\mu^+ (\varphi^0 \partial_\mu \varphi^- - \varphi^- \partial_\mu \varphi^0) - W_\mu^- (\varphi^0 \partial_\mu \varphi^+ - \varphi^+ \partial_\mu \varphi^0) \right] + \frac{1}{2} g \left[W_\mu^+ (H \partial_\mu \varphi^- - \varphi^- \partial_\mu H) - W_\mu^- (H \partial_\mu \varphi^+ - \varphi^+ \partial_\mu H) \right] \end{split}$$

$$\begin{split} &-\varphi^{-}\partial_{\mu}\varphi^{+})+igs_{w}A_{\mu}(\varphi^{+}\partial_{\mu}\varphi^{-}-\varphi^{-}\partial_{\mu}\varphi^{+})-\frac{1}{4}g^{2}W_{\mu}^{+}W_{\mu}^{-}\left[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}\right]-\frac{1}{4}g^{2}\frac{1}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{4}g^{2}\frac{1}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{4}g^{2}\frac{1}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{4}g^{2}\frac{1}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{4}g^{2}\frac{1}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{4}g^{2}\frac{1}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{4}g^{2}\frac{1}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{4}g^{2}\frac{1}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{4}g^{2}\frac{1}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{4}g^{2}\frac{1}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{4}g^{2}\frac{1}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{4}g^{2}\frac{1}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{4}g^{2}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{4}g^{2}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{4}g^{2}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{4}g^{2}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{4}g^{2}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{2}g^{2}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{2}g^{2}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{2}g^{2}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{2}g^{2}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{+}\varphi^{-}]-\frac{1}{2}g^{2}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2}+(\varphi^{0})^{2}+2\varphi^{-}Z_{\mu}^{0}Z_{\mu}^{0}Z_{\mu}^{0}]+\frac{1}{2}g^{2}Z_{\mu}^{0}Z_$$

$$\begin{split} & + \frac{1}{2} i g^2 s_W A_{\mu} H(W_{\mu}^{+} \varphi^{-} - W_{\mu}^{-} \varphi^{+}) - g^2 \frac{s_W}{c_W} (2 c_W^2 - 1) Z_{\mu}^0 A_{\mu} \varphi^{+} \varphi^{-} - g^1 s_W^2 A_{\mu} A_{\mu} \varphi^{+} \varphi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_e^{\lambda}) e^{\lambda} - \bar{v}^{\lambda} \gamma \partial v^{\lambda} \\ & - \bar{u}_j^{\lambda} (\gamma \partial + m_u^{\lambda}) u_j^{\lambda} - \bar{d}_j^{\lambda} (\gamma \partial + m_d^{\lambda}) d_j^{\lambda} + i g s_W A_{\mu} [-(\bar{e}^{\lambda} \gamma^{\mu} e^{\lambda}) + \frac{2}{3} (\bar{u}_j^{\lambda} \gamma^{\mu} u_j^{\lambda}) - \frac{1}{3} (\bar{d}_j^{\lambda} \gamma^{\mu} d_j^{\lambda})] \\ & + \frac{i g}{2} Z_{w}^0 \left[(\bar{v}^{\lambda} \gamma^{\mu} (1 + \gamma^5) \gamma^{\lambda}) + (\bar{e}^{\lambda} \gamma^{\mu} (4 s_w^2 - 1 - \gamma^5) e^{\lambda}) + (\bar{u}_i^{\lambda} \gamma^{\mu} (\frac{4}{5} s_w^2 - 1 - \gamma^5) u_i^{\lambda}) + (\bar{d}_i^{\lambda} \gamma^{\mu} (1 - \frac{8}{5} s_w^2 - \gamma^5) d_i^{\lambda}) \right] \end{split}$$

$$\begin{split} &-\bar{\mathbf{u}}_{j}^{\lambda}(\gamma\boldsymbol{\eth}+\mathbf{m}_{\mathfrak{u}}^{\lambda})\mathbf{u}_{j}^{\lambda}-\bar{\mathbf{d}}_{j}^{\lambda}(\gamma\boldsymbol{\eth}+\mathbf{m}_{d}^{\lambda})\mathbf{d}_{j}^{\lambda}+igs_{w}A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda})+\frac{2}{3}(\bar{\mathbf{u}}_{j}^{\lambda}\gamma^{\mu}\mathbf{u}_{j}^{\lambda})-\frac{1}{3}(\bar{\mathbf{d}}_{j}^{\lambda}\gamma^{\mu}\mathbf{d}_{j}^{\lambda})]\\ &+\frac{ig}{4c_{w}}Z_{\mu}^{0}\left[(\bar{\mathbf{v}}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\mathbf{v}^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{\mathbf{u}}_{j}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})\mathbf{u}_{j}^{\lambda})+(\bar{\mathbf{d}}_{j}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}-\gamma^{5})\mathbf{d}_{j}^{\lambda})\right] \end{split}$$

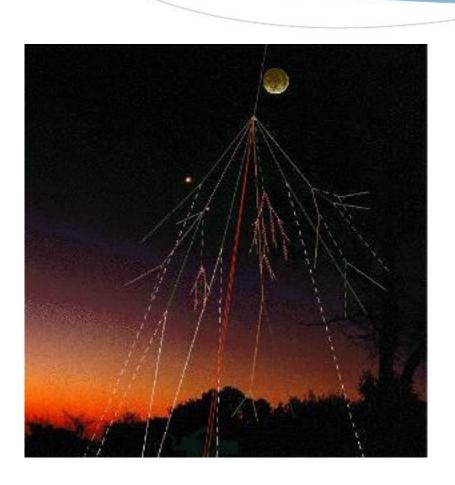
$$\begin{split} & + \frac{ig}{4c_{w}}Z_{\mu}^{0}\left[(\bar{v}^{\lambda}\gamma^{\mu}(1+\gamma^{5})v^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})u_{j}^{\lambda}) + (\bar{d}_{j}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}-\gamma^{5})d_{j}^{\lambda})\right] \\ & + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}\left[(\bar{v}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})\right] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}\left[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})v^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})\right] \end{split}$$

Le Modèle Standard

- ▲ Le **Modèle Standard** est la théorie qui décrit à la fois les particules élémentaires et les interactions.
- ♦ Comme tous les modèles, il faut s'assurer qu'il décrit bien la nature.
- ◆ Pour vérifier que ce Modèle est valide, on construit des expériences, et notamment des accélérateurs et collisionneurs de particules.
- ♦ A l'heure actuelle, le Modèle Standard est parfaitement vérifié expérimentalement.

Et le boson de Higgs?

- ♦ Dans le cadre de la symétrie fondamentale permettant de décrire les interactions, toutes les particules élémentaires sont de masse nulle.
- Or, on sait expérimentalement qu'elles ont une masse.
- L'introduction d'un nouveau boson, le **boson de Higgs**, permet de donner une masse aux particules élémentaires.
- L'ensemble de l'édifice qui décrit les trois interactions de l'infiniment petit et inclut le boson de Higgs est le **Modèle Standard**.
- ◆ A l'heure actuelle, le boson de Higgs n'a toujours pas été découvert. Le 4 juillet 2012 ATLAS et CMS ont déclaré avoir découvert un nouveau boson à une masse 126 GeV/c² (126 fois la masse du proton). De nombreux indices pointaient déjà vers le boson de Higgs. Depuis, de nouvelles mesures ont confirmé qu'il s'agissait bien là du boson tant attendu.


Conclusions

- La physique des particules s'attache à découvrir les rouages élémentaires de la matière : les particules de matière, et les interactions.
- La matière est constituée par des particules appelées **fermions**.
- Les interactions sont portées par les bosons.
- L'ensemble est décrit, à l'heure actuelle par le Modèle Standard de la physique des particules, modèle qui repose à la fois sur les expériences et la théorie. On cherche à le mettre en défaut auprès d'expériences enregistrant les collisions des accélérateurs de particules.

BACKUP SLIDES

ALWAYS USEFUL !!

Des particules comme s'il en pleuvait ...

- ✓ Supernovaes : émission de protons (cosmiques)
- ✓ Entrée dans l'atmosphère ... le nombre de particules augmente rapidement → gerbe
- ✓ On a trouvé, dans ces gerbes des particules inconnues jusqu'alors.